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The weak-field Hall coefficient and magnetoresistance are computed for a metallic model

in which the Fermi surface has the form of a cube with rounded edges and corners.

Exact

and relatively simple results are obtained as a function of a parameter which allows the shape
of the Fermi surface to evolve continuously from a sphere to a cube with sharp edges and

corners.

In going from the one extreme to the other, the Hall coefficient decreases monoton-

ically from 1/ne to 7/ne, while the Seitz magnetoresistance coefficients b, ¢, and d increase
monotonically from zero to infinity (for b and d) and to 1 —(8/3m) (forc). The results are in-
terpreted and compared with the galvanomagnetic properties of other types of models.

I. INTRODUCTION

~ This paper presents a calculation of the weak-
field Hall coefficient and the Seitz weak-field mag-
netoresistance coefficients for a new type of cubi-
cally symmetric model. The calculation is exact
and relatively simple, even though the model as-
sumes a Fermi surface which becomes highly dis-
torted for certain values of a shape parameter.

The paper is the result of a search for a simple
way to compute magnetoresistance in anisotropic
nonellipsoidal models. Except when the Fermi
surface is spherical or ellipsoidal, magnetoresis-
tance calculations are generally so complicated
that it is impossible to understand the connection
between what went into the calculation and what
came out. The goal of the present work is to
throw some light on that connection.

A very simple technique was developed in an
earlier paper for computing the weak-field Hall
coefficient in metallic models. !> The essense of
the method is to replace the actual Fermi surface
by one composed entirely of planar faces intersect-
ing in sharp edges. But this kind of model cannot
be used to calculate weak-field magnetoresistance;
the effect turns out to be linear, not quadratic, in
the magnetic field, *** and hence, it is not a true
weak -field magnetoresistance.

In the present work we get around this difficulty
by rounding the edges and corners at which the
planar faces meet. The calculation does not be-
come complicated because the Fermi surface is
constructed from a combination of simple shapes:
planes, cylinders, and spheres.

o

II. MODEL

A sketch of the Fermi surface used in the calcu-
lation is presented in Fig. 1. It is a cube from
which the sharp edges and corners have been re-
moved by rounding them off into cylindrical and
spherical forms, respectively. Opposite flat faces
are separated by the distance 2p,. The radius of
the cylindrical and spherical portions is sp,. Thus,
the length of the edges of the flat faces is 2
X (1 -s)ps. As s—1, the flat and cylindrical faces
disappear, and the surface becomes spherical.

As s~ 0, the surface becomes a cube with sharp
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Fermi-surface model used in the calcula-
tion (see Sec. II).
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edges.

At first we assumed that s<<1 (i. e., the rounded
portions constituted a very small fraction of the
total surface area) because we were interested in
determining the magnetoresistance in a model
which resembled as closely as possible the planar-
faced sharp-edged models used in the Hall coeffi-
cient work. 12 But it turned out that exact results
were easily obtainable for any fraction of curved
surface. Thus, it was possible to study the evolu-
tion of the magnetoresistance coefficients as the
Fermi surface deforms from an isotropic to a
highly anisotropic form.

To carry out the calculations, however, it was
necessary to specify not only the Fermi surface
itself but also its evolution in momentum space as
a function of energy, i.e., energy-momentum de-
rivatives were required.

One possibility is the constant-shape model
shown (in cross section) in Fig. 2(a). As the en-
ergy changes from &§ to § + A8, the constant-shape
assumption requires that the boundaries between
the flat and cylindrical parts of the surface shift
from the points g to q’, and that the axis of the
curved surface shift from point py to pg. In this
model, the gradient and higher energy-momentum
derivatives are very complicated functions on the
curved parts of the Fermi surface.

These complications may be avoided by using
the model shown in Fig. 2(b). For purposes of
differentiation, we assume that the centers of the
curved portions of the constant-energy surfaces
remain “temporarily” fixed at the point py in mo-
mentum space. Now the curves at § and § + A8
are separated by a fixed radial distance, and the
derivatives on the curved surfaces become much
simpler. In particular, the magnitude of the gra-
dient V= _V’,,é’ is constant, and is equal to its value
on the flat faces.

This artifice does not affect the results signifi-
cantly, since the difference between the positions
of the curves at § + AS in Figs. 2(a) and 2(b) is
small at all points compared to the separation of
either curve from the curve at §.

III. CALCULATION AND RESULTS

The Fermi surface shown in Fig. 1 is centered
on the origin of an orthogonal coordinate system in
momentum space (axes p,, p,, and p;) which coin-
cides with the cubic axes of the surface.

The flat faces of the Fermi surface at § =& ; lie
on the planes p;=+ |psl, i=1, 2, and 3. Normal
to these faces, we assume the parabolic relation

8=pi/2m , (1)

where ¢=1, 2, and 3, with m a constant. This is
a convenience, not a necessity. Later, we will
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FIG. 2. Two alternatives for the evolution of the
Fermi surface as a function of energy § .

describe how the final results are altered if the
relation

g(&)=pi/2m @)

is used instead of Eq. (1); g(8) is a monotonically
increasing but otherwise arbitrary function of §.

The axes of the cylindrical parts of the Fermi
surface form the edges of a cube with corners at
& Ipgl, x1pol, £1pgl). The faces of this inner
cube are separated from the corresponding flat
faces of the Fermi surface by the distance slp;l.

The coordinates of the four cylinder axes par-
allel to p;, for example, are pgy; == Ipgl
=x(1-s)lp,l, i=1and 2. The equations of the
cylindrical sections centered on these four axes
are

(b1 =bot)*+ (P2 =Pae)® =[(2m8) 2= |po] 2. (3)
Similarly, the eight spherical corners are given by
(D1 = por)* +(D2 = poe)® + (D3 = pos)?

=[(2m8)"% — |po| 7. 4)

The various derivatives needed are obtained from
Egs. (1), (3), and (4), keeping in mind that p, is to
be regarded as a constant. The nonzero compo-
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nent of %,,é’ on the flat faces perpendicular to p; is
vi=x |pyl/m (5)

at §=85, withi=1, 2, or 3. On the cylindrical
and spherical surfaces, we have

_ p _p 26 1/2
oo (s () }8
=8F

___bi=bPy 1Pl (8)
Ipfl - lpo! m ’

where i=1, 2, or 3, but the component parallel to

each cylinder axis is excluded. Both Egs. (5) and

(6) may be written in the compact form

vy = a{('l’f[/m) s (7

where a; is the direction cosine of V with respect
to the ¢th axis.

The second derivatives (i.e., the components of
the reciprocal effective-mass tensor) are

1 52 1
(7?:)”5 —31,{;)! = [8-(1=9) agay], (8)
where 8;; is the Kronecker 6. The indices 7 and
j=1, 2, or 3, but exclude those values for which
@; or a, is zero. When s <1, (1/m);; becomes
a very anisotropic tensor. This corresponds to
the fact that the carriers have an effective mass
m when they move in the normal direction to any
part of the Fermi surface, but an effective mass
sm when they move along the curved part of the
Fermi surface. To put it another way, the angular
velocity of the carriers moving on the curved sur-
face is 1/s times larger than it would have been
on a spherical Fermi surface of radius py.

Another distinctive feature of the model is the
appearance of nonzero third derivatives. All of
them have the form

o’8 1
0p; 8p;8p, S Ipslm
x (8350 +0 50 +050,=3a,a;0,) . (9)

Again, i, j, and k=1, 2, or 3, but exclude values
for which a;, @y, or a,=0. Note that Eq. (9) is
nonzero only on the curved parts of the Fermi sur-
face.

We next substitute Egs. (7)-(9) into the standard
expressions which constitute the Jones-Zener
weak-field solution to the Boltzmann equation.’
Degenerate statistics and an isotropic scattering
time 7 are assumed. It is important to note that
use of the standard weak-field solution implies
that carriers on the curved parts of the Fermi
surface turn through a small angle during the time
7, no matter how sharp the curves may become.

If the relation between the current density I, the

electric field -ﬁ, and the magnetic field H is written
(10

the results may be expressed as three types of in-
tegrals over the Fermi surface Sg:

2\ erlp,l
U{j=<—h3—>-——-‘17pt—‘/.; a,adeF , (11)
F

2\ er2lp,l 1
Oyjn= <";'ZT)#L[ aiar<_;n_>sj € dSr ,
Sp

(12)
9 4.3 p 1 1
Oije1= <_5'> ¢ Tn,il lLFaiat[(_n—i->ur(7n->si
938

] €14u€ars 95F (13)

Li=0i;Ej+ 013 EHy, + 0y jyy E;H Hy 4+

+ o
m " 9p,dpdp;

where % is Planck’s constant, e is the carrier
charge, and €, is the permutation tensor. Sum-
‘mation over repeated indices (7, s, f, u) is implied
in Egs. (10)=(13) and wherever else they appear

in the equations to follow.

The final form of the results becomes much sim-
pler by using the relation between carrier density
and the volume in momentum space enclosed by
the Fermi surface:

n=2/h%) 2|ps)*[1 - (3 -3m *+(2-Fm) s’] . (14)

Then we have

=g T =@ -3m s+ (1 -3m) s® (15)
== 1-3B-ns+2-%ms® |

_ ne’r? f €Gm) (L = 55) } (16)
Gi= T E 1B -3n) s+ R -fm) s* )
1
0;411=0, ()
_ ne*r® f (n/45)(1 - %s) (17b)
Oiigj=="_3 [1-B-ins?+(2-gms® |’
ne'r’ | ig \ (17¢)

Gm TS 1-@B - s+ @-Tm sy

and o0y,;;=0, (17d)

where ¢, j, and 2 may equal 1, 2, or 3, but must
be different from one another. No other classes of
terms (e.g., 0y, 0y OT Oiz) can possibly be
nonzero for any model with cubic symmetry of
types m3m, 43m, or 432.

The weak-field Hall coefficient is given by R,
= 0153/0%; therefore,

Ry=(4n/ne) [1 =45~ (3 -$m) *+(3 -§ ) s°
~G-gmV1-@2-3m s+ -3m)s*E. (18)

We define a dimensionless weak-field magnetore-
sistance M .4, by the relation
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80/po= Map," (kg H/C)?, (19)

where Ap/p, is the fractional change in the zero-
field resistivity, apBy and 6e¢¢ identify the current
and magnetic field directions relative to the cubic
axes, (y(= Ryo,) is the Hall mobility, and C is the
compatability factor between the electrical and
magnetic units used.

Then the dimensionless Seitz coefficients b, c,
and d are related to Eq. (19) by

Ma37565= b+C(Lini)z+d(L§ni2), (20)

where ¢; and n; are the direction cosines of the
current and magnetic field directions in the cubic-
axis system.

The relations between the components of Eq. (10)
and b, ¢, and d are

b=-Do;;;;-1, (21a)

c==D(0;;3;+0355)+1, (21b)
and

d==D(0434; = 04345 = Oijis = O138) » (21c)

where D=0¢/05,,. Substituting Egs. (15)-(17) into
Egs. (21) leads to the final result

p- rf=rineetamel e
_(8/3mM1- 2 in sl 35 L1, (22)
and d=-(b+c). (22¢)

The last relation follows immediately from Egs.
(21) and (17a).

Because degenerate statistics and an isotropic
T were assumed, R, depends only on z and s, and
b, ¢, and d depend on s alone. Figures 3 and 4
present numerical results for the Hall factor »
(R, =7/ne) and the Seitz coefficients b and c as
functions of s.
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FIG. 3. Graph of the Hall factor » (Ry=7/ne) as a

function of the shape parameter s [Eq. (18)].
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FIG. 4. Graph of the Seitz magnetoresistance coef-
ficients b and ¢ as a function of the shape parameter s
[Egs. (22a) and (22b)] .

We have also carried through the calculation
without assuming degenerate statistics, and using
the nonparabolic relation [Eq. (2)] instead of the
parabolic one [Eq. (1)].

Then the second-, third-, and fourth-rank ten-
sors in the expressions for b, c, and d [Eqs. (21)]
take on the form

Uz=f{‘%g—)l}“1 ‘r"lAz(‘g) (%/;L) ds , (23)

where A,(8) is the function inside the curly brack-
ets in the results for those tensors as given in
Eqgs. (15)—=(17), f, is the unperturbed distribution
function, and z is the rank of the tensor.

Since the new results for b, ¢, and d each con-
tain the factor 0,0,/0%, the magnetoresistance
symmetry i3 unaffected; furthermore, the effect
of the nonparabolic factor g(§) vanishes when the
statistics become degenerate.
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IV. DISCUSSION

A. Hall Coefficient

Very little need be said about the behavior of
the weak-field Hall coefficient. The Hall factor
¥ starts out at unity for s=1, as it should for a
spherical Fermi surface. It decreases monoton-
ically with decreasing s, i.e., with increasing
distortion, and approaches the value {7 as the
Fermi surface approaches the limiting form of a
cube with sharp edges [Eq. (19) and Fig. 3].

This behavior is in accord with the rules for the
general behavior of the Hall coefficient, i.e., »
should drop below unity from shape distortion
alone, and it should decrease as the surface be-
comes more highly distorted.'s?

The minimum value of 7 corresponds to the
true weak-field limit, as noted in Sec. III and dis-
cussed elsewhere.? No matter how sharp the edges
become, the magnetic field f is always assumed to
be so small that the Hall angle remains small for
carriers moving on the curved parts of the surface.
If His kept at a small but fixed value, then ulti-
mately »—%. This corresponds to a mixed-field
limit in which carriers either stay on one face or
go completely around a corner, i.e., the Hall
angles are either 0° or 90°.

Since the high-field limit for a closed simply con-
nected Fermi surface is 7 =1, »(H) should go
through a minimum value at intermediate H. This
kind of behavior probably accounts for similar
characteristics seen in p-type Ge and Si. 6

B. Magnetoresistance

The model chosen for this paper is potentially
useful for understanding the general behavior of
weak-field magnetoresistance because it is a me-
tallic single-pocket model which predicts a non-
zero effect of considerable magnitude (except when
s is close to unity). Consequently, the model cor-
responds to the situation most commonly encoun-
tered in real materials, viz., a substantial mag-
netoresistance arises because carriers on differ-
ent parts of the same Fermi surface respond in a
significantly different fashion to a given set of ap-
plied forces.

This is to be contrasted with the more widely
investigated, but more restricted type of model
which is realistic only near band edges. Here it is
usually assumed that the constant-energy surfaces
are spherical or ellipsoidal. But single surfaces
of either shape predict a zero magnetoresistance
in the metallic approximation. A small or modest
effect arises from the energy-dependent response
of carriers if the statistics are not degenerate, but
this of course restricts the applicability of the
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model to semiconductors or semimetals.

The only simple band-edge model which predicts
a large magnetoresistance is the multivalley model
with highly prolate or highly oblate ellipsoidal en-
ergy surfaces. But this is still a very special sit-
uation in which the effect does not originate within
the individual anisotropic surfaces, but is due
rather to the different responses of the electrons
in differently oriented valleys.

With the above remarks about the nature and ap-
plicability of magnetoresistance models in mind,
we may now examine the magnetoresistance char-
acteristics of the present model.

In analogy with the rules for the general behav-
ior of the weak-field Hall coefficient,? we anticipate
that (since 7 is isotropic) the magnetoresistance
will depend only on the shape of the Fermi surface
and how that shape evolves as a function of energy.

Shape evolution enters the problem in a minor
way - it is present only because the slightly modi-
fied model in Fig. 2(b) was used instead of the con-
stant-shape version shown in Fig. 2(a).

We noted in Sec. III that substituting g(8) for 8
had no effect on the results when the statistics are
degenerate. This follows because the substitution
does not change the shape or the shape-evolution
factors at the Fermi energy.

And, in general, only modest changes are to be
anticipated when the statistics are not degenerate,
because an energy-dependent response is never an
important source of magnetoresistance except in
the special circumstance that carriers on one en-
ergy surface produce little or no effect by them-
selves.

A magnetoresistance symmetry parameter x
may be defined by the relation

brc+xd=0. (24)

An unanticipated general characteristic of the
present magnetoresistance results is that x=1 for
all values of the shape parameter s. This is to be
contrasted with the known result that even a very
slight deviation from an isotropic model makes
x#1.7

This condition x=1 does occur in a (100)-ori-
ented ellipsoidal mullivalley model.® At first
glance, that does not make the present results
more understandable because the cube-shaped
Fermi surface may be regarded as an approxima-
tion to a spherical surface which has been pulled
out along the (111) directions in momentum space.
For a (111)-oriented ellipsoidal multivalley model
x=0.% But a closer look at the model reveals the
origin of the x=1 condition, and demonstrates how
sensitively the magnetoresistance symmetry de-
pends on the detailed nature of the Fermi-surface
distortion.
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The model in Fig. 1 may be taken apart and,
without rotating any of the pieces, reassembled
into a three-band model which is composed of a
sphere, three cylinders, and three flat “pan-
cakes. ”

Each of these bands is equivalent to a (100) ellip-
soidal multivalley model. The values of mass
ratio K which characterize the anisotropy of the
valleys are 1, «, and 0 for the sphere, cylinders,
and pancakes, respectively.

But the relationship among b, ¢, and d in a mul-
tivalley model is the direct consequence of a cor-
responding relationship among appropriate compo-
nents of the magnetoconductivity tensor o;;,,.
Since the contributions to the latter from different
bands are additive, it follows that the value of the
symmetry parameter x for any number of multi-
valley bands having a given type of valley orienta-
tion is the same as for one set of valleys having
that orientation. Hence, in this case, x=1.

The other major aspect of the magnetoresistance
results that needs to be assessed is the over-all
dependence of b, ¢, and d on the shape of the
Fermi surface. For s=1, b, ¢, and d are all
zero, as expected for an isotropic metallic model.
As the surface deforms, b and d grow, approach-
ing infinity as s- 0, while ¢ never rises above
0.15 or so [Egs. (22) and Fig. 4].

Because of the nature of Eq. (20) which relates
b, ¢, and d to the experimentally measurable mag-
netoresistance M, "%, all transverse magnetore-
sistance coefficients increase without limit as
s=0, as do all longitudinal magnetoresistance co-
efficients except one. The single exception is
Mi%(=b+c+d). This is identically zero at all
values of s because x=1.

It is not surprising to discover that the magneto-
resistance generally becomes large as the Fermi
surface becomes more and more highly distorted.
Other examples of the same phenomenon are the
cubically symmetric ellipsoidal multivalley models
in the highly oblate region.® However, there is an
important distinction between the two cases. In
the multivalley model, the valleys would ultimately
intersect one another as they were made more and
more oblate, so that this is a rather unrealistic
kind of model. In the present case, all values
of magnetoresistance between zero and infinity
arise from a cube of electronic states of a fixed
size simply by rounding off its edges to various
degrees.

Another simple model which can lead to a large
magnetoresistance is the isotropic two-band
model.’® In weak fields

Bp _ myngpy iy (g + o) °H

Po (n1u1+n2u2)202 (25)

b4

ALLGAIER AND R. PERL 2

where n; and u;, and n, and u, are the densities
and mobilities of the carriers in bands 1 and 2,
respectively. If (i,H)? is factored out of the right-
hand side of Eq. (25), then we may define a dimen-
sionless magnetoresistance analogous to that given
in Eq. (19) as

M=1b(1+b)%/(1+1b)?, (26)
where ft=ny/n, and b=,/ .

The term M, given by Eq. (26), can become
large. But it pertains to an isotropic two-band
model while the present calculation (for s<<1)
was carried out for a highly anisotropic single-
band category; therefore, it appears that the two
magnetoresistance results become large for quite
different reasons. But this is not the case.

We examine Eq. (26) under the circumstance
that there are a relatively small number of rela-
tively high-mobility holes in band 2, i.e., <1
and 5> 1. If, in addition, ¢b>1 (this means that
most of the conductivity takes place in band 2),
then M ~b/t.

The large magnetoresistance results obtained
in the present paper (when s<< 1) may be viewed
in a similar light. The band-2 characteristics
now apply to the carriers on the curved portion of
the Fermi surface. Their numbers are relatively
small because s is small. Their “magnetoresis-
tance mobility” (i. e., their mobility as they move
along the curved part of the surface) is relatively
high because 7 is the same on all parts of the sur-
face, and their mass is sm rather than m. Thus,
the sharper the edges become, the higher the car-
rier mobility becomes there, relative to its value
on the flat surfaces, and the larger M becomes.

Finally, we note that the magnitude of ¢ remains
small for all values of s. Whether or not this is
a general characteristic of a single highly dis-
torted cubically symmetric Fermi surface re-
mains to be seen. It is not a characteristic of the

‘cubically symmetric multivalley models. In the

highly oblate limit, b, ¢, and d all become large.’

We know of one possibly pertinent experimental
result. In SnTe, a highly degenerate semiconduc-
tor, b is as much as six times larger than c.!!
This compound does have a multivalley band struc-
ture, but the magnetoresistance symmetry does
not correspond to any of the ellipsoidal multivalley
models, ® and theoretical calculations indicate that
the valleys have a highly distorted nonellipsoidal
shape.!?

V. CONCLUDING REMARKS

We noted above that the kind of model which
makes Hall coefficient calculations so simple can-
not be used to calculate weak-field magnetoresis-
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tance. What we used here instead — a Fermi sur-
face having flat faces connected by simple types of
curved surfaces — did make it possible to carry
out a relatively simple computation of the Seitz
magnetoresistance coefficients ina highly distorted,
nonellipsoidal model. In all probability, no other
kind of nonellipsoidal model would have led to a
simpler calculation.

However, it will not be as easy to use this kind
of model as an approximation to a variety of real
Fermi surfaces as it was in the case of the Hall
coefficient. But in view of the enormous complex-
ity of most magnetoresistance calculations, we
hope that this single example has provided some
useful insight into the general behavior of weak-
field magnetoresistance.
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We give a complete description of a relativistic augmented-plane-wave calculation of the
band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and
position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(Ep) =13.8, 23.2, 18.7,
and 32.7 (states/atom)/Ry, respectively. Spin-orbit coupling is important for all four metals
and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with
de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agree-
ment was very good. Comparison with measured electronic specific-heat coefficients ¥ and
cyclotron masses indicate that the average mass enhancements are 1.37, 1.44, 1.63, and
1.66 for Ir, Rh, Pt, and Pd, respectively; and that for both Pt and Pd the partial enhance-
ments on the closed electron surface and on the open hole surface are 1.51 and 1.68, respec-
tively. Saddle points in the fifth band are important for the large peak in N(E) near the top
of the d band. The experimental y(x) for Rh,Pd,_, is not uniformly enhanced over the calcu-
lated rigid-band y(x). The experimentally observed field and temperature dependences of the
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magnetic susceptibility for Pd are consistent with the calculated N(E).

I. INTRODUCTION

In recent years there has been great interest in
explaining the increasing tendency towards ferro-
magnetism and the simultaneous disappearance of
superconductivity through the sequence of fcc 4d
and 5d transition metals: Ir, Rh, Pt, and Pd.’

Particular attention has been paid to the role of
spin fluctuations, 2 produced by the strong ex-
change interactions among the d electrons. A
starting point for the quantitative explanation of
such effects is an accurate knowledge of the pa-
rameters of the one-electron theory for these met-
als,** and we have therefore calculated surfaces



